Complete Dual Characterizations of Optimality and Feasibility for Convex Semidefinite Programming
نویسندگان
چکیده
A convex semidefinite programming problem is a convex constrained optimization problem, where the constraints are linear matrix inequalities, for which the standard Lagrangian condition is sufficient for optimality. However, this condition requires constraint qualifications to completely characterize optimality. We present a necessary and sufficient condition for optimality without a constraint qualification. This is achieved by relaxing the standard Lagrangian condition to a new asymptotic form. A dual condition characterizing feasibility of a convex semidefinite program is also obtained. As applications of the optimality conditions we derive a version of Farkas’ lemma for systems involving matrix inequalities and obtain a strong duality result for the convex semidefinite programming problems. A numerical example is also given to illustrate the nature of the asymptotic optimality condition.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملThe KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings
The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...
متن کاملLocal Duality of Nonlinear Semidefinite Programming
In a recent paper [8], Chan and Sun reported for semidefinite programming (SDP) that the primal/dual constraint nondegeneracy is equivalent to the dual/primal strong second order sufficient condition (SSOSC). This result is responsible for a number of important results in stability analysis of SDP. In this paper, we study duality of this type in nonlinear semidefinite programming (NSDP). We int...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کامل